IterableWrapper¶
- class torchdata.datapipes.iter.IterableWrapper(iterable, deepcopy=True)¶
Wraps an iterable object to create an IterDataPipe.
- Parameters:
iterable – Iterable object to be wrapped into an IterDataPipe
deepcopy – Option to deepcopy input iterable object for each iterator. The copy is made when the first element is read in
iter().
Note
If
deepcopyis explicitly set toFalse, users should ensure that the data pipeline doesn’t contain any in-place operations over the iterable instance to prevent data inconsistency across iterations.Example
>>> # xdoctest: +SKIP >>> from torchdata.datapipes.iter import IterableWrapper >>> dp = IterableWrapper(range(10)) >>> list(dp) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]